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Abstract

Determining the surface protonation behavior of natural adsorbents is essential to understand how they interact with their

environments. ProtoFit is a tool for analysis of acid–base titration data and optimization of surface protonation models. The

program offers a number of useful features including: (1) enables visualization of adsorbent buffering behavior; (2) uses an

optimization approach independent of starting titration conditions or initial surface charge; (3) does not require an initial

surface charge to be defined or to be treated as an optimizable parameter; (4) includes an error analysis intrinsically as part of

the computational methods; and (5) generates simulated titration curves for comparison with observation. ProtoFit will

typically be run through ProtoFit-GUI, a graphical user interface providing user-friendly control of model optimization,

simulation, and data visualization. ProtoFit calculates an adsorbent proton buffering value as a function of pH from raw

titration data (including pH and volume of acid or base added). The data is reduced to a form where the protons required to

change the pH of the solution are subtracted out, leaving protons exchanged between solution and surface per unit mass of

adsorbent as a function of pH. The buffering intensity function Q�ads is calculated as the instantaneous slope of this reduced

titration curve. Parameters for a surface complexation model are obtained by minimizing the sum of squares between the

modeled (i.e. simulated) buffering intensity curve and the experimental data. The variance in the slope estimate, intrinsically

produced as part of the Q�ads calculation, can be used to weight the sum of squares calculation between the measured buffering

intensity and a simulated curve. Effects of analytical error on data visualization and model optimization are discussed.

Examples are provided of using ProtoFit for data visualization, model optimization, and model evaluation.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The protonation behavior of surfaces affects a
wide range of geochemical processes such as pH
buffering, colloid stability, mineral dissolution and
e front matter r 2006 Elsevier Ltd. All rights reserved
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precipitation behavior, electrostatic surface–surface
interactions, metal binding, and organic solute
binding to surfaces. ProtoFit is a software tool for
analysis of potentiometric acid/base titration data,
optimization of surface protonation models, and
simulation of titrations. Although ProtoFit is pri-
marily intended to be used for surfaces, it can also be
used to model the protonation behavior of natural
organic matter (NOM) and other solutes.
.
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ProtoFit was created to utilize a buffer value
approach in parameterizing discrete-site protona-
tion models utilizing simple acidic and basic proton
exchange reactions, although the approach could be
adapted to model continuous pK distributions.
Currently, the program works with non-electro-
static surface complexation models, and electro-
static models including the diffuse layer, constant
capacitance, and Donnan shell models. In addition,
our approach provides a context for data visualiza-
tion that has a number of advantages relative to
more widely used approaches. A graphical user
interface ProtoFit-GUI was developed to aid the
user by providing efficient control of model
optimization, simulation, and data visualization.
2. Background

2.1. Surface protonation modeling

By surface protonation, we refer to the mass
transfer of protons (Hþ ions) between solution
and binding sites on a solid surface or dissolved
molecule. Although similar methods can be used for
both surface proton binding and proton binding to
dissolved molecules, the following discussion per-
tains to a surface reaction involving the exchange of
protons between a solution and an adsorbent.
Surface protonation reactions are typically envisioned
as follows:

�RH0 ¼�R� þHþ (1)

�RHþ2 ¼�RH0 þHþ (2)

where ‘‘�R’’ represents either an inorganic crystal-
lographically-bound or organic functional group on
the surface (see Dzombak and Morel, 1990, for a
review of the history of surface complexation model-
ing). In Eq. (1) the species �RH0 exhibits acidic
behavior, releasing a proton to yield a negatively-
charged surface species; in Eq. (2) the species �RH0

exhibits basic behavior, absorbing a proton to form a
positively-charged surface species. If one binding site
exhibits both behaviors, it is termed amphoteric, and
complex surfaces or molecules can exhibit more than
one type of binding site. The equilibrium mass action
expressions for Eqs. (1) and (2) are

f�R�gaHþ

f�RH0g
¼ K1 exp

FC
RT

� �
(3)
and

f�RH0gaHþ

f�RHþ2 g
¼ K2 exp

FC
RT

� �
(4)

constrained by the mass balance expression

f�RHgtot ¼ f�RH0g þ f�R�g þ f�RHþ2 g (5)

where fg denotes the concentrations of surface
species in moles per L of solution, aHþ is the
thermodynamic activity of Hþ, K1 and K2 are the
equilibrium constants, F is Faraday’s constant, C is
the surface potential, R is the ideal gas constant, and T

is absolute temperature (Stumm, 1992). The surface
potential C is a function of surface charge, s,
depending on the electrostatic surface complexation
model, or equal to zero for a non-electro-
static model (NEM). The goal of determining the
surface protonation constants would be to
obtain values of K1 and/or K2, and f�RHgtot for
each discrete surface site as required by a given
model.

2.2. Optimizing models by the proton balance

approach

The proton balance approach is perhaps the most
widely used approach to optimizing protonation
constants among geochemists. The approach does,
however, present difficulties for some adsorbents
which may be overcome using our approach
(Section 3). A description of the proton balance
approach follows. A titration designed for deter-
mining surface protonation constants usually in-
volves a known amount of solid suspended in an
electrolyte solution of known volume and concen-
tration. Small aliquots of strong acid or base are
added to the suspension, and pH is measured at
each step. A system with NaCl as a background
electrolyte and containing an adsorbent being
titrated with HCl or NaOH titrant is subject to
the following charge balance equation:

½Cl�� þ ½OH�� þ
X

j

f�R�gj ¼ ½Naþ� þ ½Hþ�

þ
X

j

f�RHþ2 gj

ð6Þ

where [ ] denotes the concentration of an aqueous
species per volume or mass of solution. As the
titration proceeds, ½Cl�� and ½Naþ� change
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according to the concentration of acid or base
added:

½Cl�� ¼ ½Cl��0 þ CA (7)

½Naþ� ¼ ½Naþ�0 þ CB (8)

where ½Cl��0 and ½Naþ�0 are the initial concentra-
tions of Cl� and Naþ, and CA and CB are the
concentrations of acid and base, respectively, added
per unit volume or mass of solution. If
½Cl��0 ¼ ½Naþ�0, then substituting Eqs. (7) and (8)
into (6) leads to

CA � CB ¼ ½H
þ� � ½OH�� þ

X
j

f�RHþ2 gj

�
X

j

f�R�gj ð9Þ

(Stumm, 1992). Eq. (9) is reasonable if the amount
of strong acid or base present at the beginning of the
titration experiment can be expected to be zero. In
other words, Eq. (9) applies if it can be assumed that
there is no imbalance between positive and negative
counterions prior to initiation of the titration.
Otherwise, a T0

H term should be added to the left
side of Eq. (9) (see below). Since CA and CB are
known, and ½OH�� and ½Hþ� are calculated from pH
measurements, the value of

P
f�RHþ2 g �

P
f�R�g

can be calculated for every pH value covered over
the course of the titration by Eq. (9). Using a proton
balance algorithm for optimizing model parameters
such as FITEQL 4.0 (Herbelin and Westall, 1999),
the problem of determining constants for the above
model would be solved by finding values of K1, K2,
and f�RHgtot that would result in a minimum
weighted sum of squares difference between the left
and right sides of Eq. (9). For natural organic
surfaces or natural dissolved ligands, the difficulty
with the approach inherent in Eq. (9) is that an
imbalance in electrolyte counterions may exist prior
to initiation of the titrations, causing the mass
balance to fail. Preparation of natural organic
matter or biological surfaces (such as bacteria) for
titration is generally more complex than prepara-
tion of mineral surfaces, decreasing the likelihood
that ½Cl��0 ¼ ½Naþ�0. For example, preparation of
Leonardite humic acid by Westall et al. (1995) by
dialysis designed to promote complete dissolution
and eliminate the size fraction readily passing
through the dialysis membrane necessarily altered
the acid–base balance of the system. As another
example, preparation of biological surfaces (such as
bacteria) for titration involves introducing to
suspension wet biomass, for which the initial
acid–base balance is unknown (Fein et al., 2005).

The following is an explanation of how the
difficulty described above is dealt with by the
proton balance approach. Assuming no counterion
complexation with functional groups, the proton
mass balance for a system where an adsorbent is
being titrated is

Tcalc
H ¼ ½Hþ� � ½OH�� þ

X
j

f�RHþ2 gj

�
X

j

f�R�gj ð10Þ

where Tcalc
H is the total concentration of component

Hþ calculated from species in contact with solution
(Westall et al., 1995). Implicit in the understanding
of Eq. (10) is that f�RH0g is the reference state, or
zero proton condition, for ligand j (i.e. protons in
f�RH0gj do not contribute to Tcalc

H ). In an
experimental system,

P
f�RHþ2 g �

P
f�R�g is

unknown, thus the experimental value of TH ,
T

exp
H , is defined as

T
exp
H ¼ CA � CB þ T0

H (11)

where T0
H represents the concentration of strong

acid or strong base initially present (Westall et al.,
1995). For a system containing only NaCl as a
background electrolyte, we can think of T0

H as
equaling the difference ½Cl��0 � ½Naþ�0. This differ-
ence may be a significant part of the proton balance
while insignificant in terms of the total NaCl
concentration. Under such conditions, Eq. (9) may
be rewritten as

CA � CB þ T0
H ¼ ½H

þ� � ½OH�� þ
X

j

f�RHþ2 gj

�
X

j

f�R�gj. ð12Þ

Since experimental determination of T0
H is likely to

be impractical in most cases, Westall et al. (1995)
suggested that T0

H be treated as an adjustable
parameter. Sets of equilibrium constants and site
concentrations, plus T0

H , are optimized by minimiz-
ing the weighted sum of squares between T

exp
H and

Tcalc
H . This approach has the disadvantage in that

the concept of T0
H is confusing, and that it requires

the use of one additional adjustable parameter
beyond the protonation constants sought. As
discussed in Section 3, ProtoFit avoids this problem
by using a different approach to the optimization
problem.
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2.3. Use of buffer value in the analysis of titration

data

When conducting a potentiometric (acid–base)
titration, the goal is to constrain the pH buffering
behavior of either the solution, a dissolved compo-
nent in solution, or a suspended adsorbent. A
convenient way interpret titration data is through a
buffer value function for the solution or adsorbent.
This function represents the capacity of a solution
or adsorbent to resist changes in system pH as a
function of pH; this is the behavior of interest to the
experimenter. van Slyke (1922) was the first to use
the concept of buffer value in the interpretation of
titration data. The buffer value b, of a solution as
defined by van Slyke is the instantaneous rate of
change in the amount of strong base added to the
solution (B) per pH unit:

b ¼
dB

dpH
(13)

van Slyke (1922), later investigators such as
Grunwald (1951) and Kilpi (1952), and recent
investigators such as Chen et al. (1996) used
derivative-based approaches to determine protona-
tion constants for dissolved acids. Villieras et al.
(1992, 1997) used a derivative-based approach to
interpret measurement of gases adsorbed to solid
surfaces. Prelot et al. (2002) adapted the approach
of Villieras et al. to interpret the protonation
behavior of heterogeneous oxide surfaces. ProtoFit,
as described in Section 3, provides a new algorithm
for calculating a buffering value function for an
adsorbent and optimizing surface complexation
models to fit the observed buffering behavior. Since
derivative functions such as van Slyke’s represent
the behavior of interest to the experimenter, they are
useful for data visualization. Villieras et al. (1997)
noted that visualization of a derivative-based
adsorption function, rather than undifferentiated
adsorption data, made it much easier to draw
conclusions regarding the adsorption behavior of
interest. However, they also warned that problems
with experimental noise could be exacerbated by
using a derivative approach. ProtoFit enables the
analyst to easily examine the experimental buffering
value function and compare it to model predictions
(see Section 4). The algorithm used by ProtoFit
automatically estimates the standard error in the
experimental buffering value function, which can be
used to mitigate problems with experimental noise
in the optimization problem (see Sections 3.2
and 3.3). Further discussion of the effects of noise
on data visualization and model optimization is
provided in Section 5.

3. Problem solving approach used in ProtoFit

3.1. Calculation of the buffer value

The basis for the ProtoFit approach is the
following proton mass balance equation valid for
a system with zero solution alkalinity:

DnHþ;total;i ¼ DnHþ;wat;i þ DnHþ;ads;i (14)

where DnHþ refers to the amount (i.e. moles) of
proton added to the system as a whole (total),
water, and adsorbent from the beginning of the
titration to step i. Calculation of DnHþ ;total ,
representing the amount of strong acid added
(or removed) from the system, comes directly from
the titration data

DnHþ;total;i ¼ Vtitr;iNacid (15)

where V titr;i is the total volume of acid or base
added at step i, and Nacid is the normality of the acid
(negative value if base). The value of DnHþ ;wat,
representing the amount of protons exchanged with
water over the course of the titration, is found by
speciating the solution using measured pH values:

DnHþ;wat ¼ ðV0 þ V titr;iÞ
10�pHi

gi;Hþ
�

10�14þpHi

gi;OH�

� �

� V0
10�pH0

g0;Hþ
�

10�14þpH0

g0;OH�

� �
ð16Þ

where g is the activity coefficient, and V 0 refers to
the solution volume at the beginning of the tiration.
ProtoFit can calculate activity coefficients by a
number of methods, including the Davies, Debye–
Huckel, and Truesdell–Jones equations, or can
assume activity coefficients equal unity. The value
of DnHþ;ads is obtained after substituting Eqs. (15)
and (16) into (14). Hence the amount of protons
exchanged with the adsorbent, DnHþ ;ads, is calcu-
lated directly from experimental measurements.

ProtoFit uses the values of DnHþ;ads to calculate
an adsorbent proton buffering function (Q�ads) as a
function of pH, representing the buffer values of the
adsorbent. This quantity expresses what the titra-
tion is intended to measure: the pH-dependence of
the surface’s ability to buffer solution pH. The
function Q�ads is the derivative of DnHþ;ads normal-
ized to adsorbent mass, calculated by performing a



ARTICLE IN PRESS
B.F. Turner, J.B. Fein / Computers & Geosciences 32 (2006) 1344–13561348
polynomial regression on a closely-grouped set of
data points. The polynomial regression is performed
using a series of matrix operations suitable for a
multiple regression (see Turner, 2005 for details).
For a calculation of Q�ads at data point i, the group
of points involved in the regression includes point i

plus the two points before and after (i.e.
i � 2; i � 1; i; i þ 1; i þ 2). The regression estimates
the parameters b0, b1, and b2 for the polynomial

Qads ¼
DnHþ ;ads;i

Mads

¼ b0 þ b1xþ b2x2 (17)

where Mads is the mass of the adsorbent, and x is the
pH value. The slope Q0ads of this function at point i is
the derivative of the above equation:

Q0ads;i ¼ b1 þ b2xi (18)

Calculation of Q0ads at the first two and last two
points in the titration requires a slight modification
to the above method (see Turner, 2005 for details).
The derivative Q0ads (i.e. dQads=dpH) yields negative
values; since it is more convenient to visually
compare positive values, the derivative is converted
to one yielding a positive value by

Q�ads ¼
dQads

dlog aHþ
¼

dQads

dpH
¼ �Q0ads. (19)

3.2. Error analysis

One advantage of our algorithm for calculating
Q�ads is that an error analysis is intrinsically part of
the computation. Treating Q�ads as a linear combina-
tion of b1 and b2, the variance in the slope estimate
is calculated by

VðQ�adsÞ ¼ VðQ0adsÞ ¼ Vðb1Þ þ 4xiCovðb1; b2Þ

þ 4x2
i Vðb2Þ ð20Þ

where the variance Vð Þ and covariance Covð Þ values
of the coefficients are obtained from the associated
variance-covariance matrix (see Turner, 2005 for
details). Values of VðQ�adsÞ reflect the uncertainty in
Q�ads due to experimental noise. The error values
VðQ�adsÞ permit the optimization routine to give
more weight to the highest quality portions of
the titration data, while giving less weight to noisy
or poorly-constrained portions of the data (see
Section 3.3). Also, the estimate of Q�ads tends to be
the least well-constrained at the very beginning and
end of the titration curve, and this is reflected in
VðQ�adsÞ (see Turner, 2005 for details). In addition to
weighting of the optimization, visualization of
VðQ�adsÞ provides the user with a gauge of the
quality of the dataset.

3.3. Parameter optimization

ProtoFit, similarly to FITEQL, uses a weighted
least sum of squares approach to determine surface
protonation constants. However, ProtoFit avoids
the use of the T0

H parameter often necessary for
using the proton balance approach by following a
fundamentally different way of defining the pro-
blem. ProtoFit optimizes model constants by mini-
mizing the weighted sum of squares difference
between Q�ads (derived from experimental data) and
a model proton buffering function F�ads (calculated
using a surface protonation model). The optimiza-
tion proceeds by adjusting the model constants until
the weighted sum of squares difference between Q�ads

and F�ads arrives at a minimum. The simulated
derivative function F�ads is obtained by finding the
slope of a function Fads defined as

FadsðiÞ ¼
ðsi � s1ÞSSA

Fd

(21)

for i41 where s is surface charge (e.g.
Coulombsm�2) calculated using the surface proto-
nation model, Fd is Faraday’s constant (e.g.
96490Cmol�1), and SSA is the specific surface area
(e.g. m2 kg�1) of the surface. The value of s is
defined as

s ¼
Fd

SSA

X
j

ðf�RHþ2 gj � f�R
�gjÞ (22)

where the subscript j refers to a given surface site.
When using the non-electrostatic model (NEM),
where calculation of surface potential C from s is
not necessary, the choice of SSA value can be
arbitrary, provided that SSA40. The function Fads

has the same dimensions as Q, and F�ads is obtained
from Fads in a way similar to how Q�adsis obtained
from Qads, except with zero analytical error (see
Turner, 2005 for details on finding the derivative of
Fads). The weighted sum of squares objective
function SS� minimized by ProtoFit is

SS� ¼

P
i ðF
�
ads �Q�adsÞ

2P
i VðQ

�
adsÞ

0:5w
(23)

where w is the error weighting parameter. This
function is designed so that points with greater
uncertainty in Q�ads are given less weight in the
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Fig. 1. Comparison of raw titration data to function Q�ads used by

ProtoFit: (a) raw titration data for acetic acid; (b) function Q�ads

(‘‘proton buffering’’ capacity as a function of pH). Solid lines in

(a) and (b) represent one-site NEM optimized by ProtoFit:

logK ¼ �4:69, logC ¼ 1:23 logðmol kg�1Þ. Error bars indicate

standard error of Q�ads (i.e. square root of V ðQ�adsÞÞ.
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optimization depending on the value of w used. An
analysis of the effect of experimental noise on data
analysis and model optimization is reported in
Section 5. When more than one dataset is used in
the optimization, each dataset is given equal weight
in calculating a total SS�. ProtoFit adjusts the
values of the model parameters until SS� reaches a
minimum. The algorithm used for minimizing SS� is
adapted from the ‘‘pattern search’’ algorithm of
Hook and Jeeves (1960).

Since least squares optimization techniques can
often yield non-unique solutions or solutions
representing local rather than global minima, the
solution arrived at is often dependent on the starting
guess. ProtoFit addresses this problem by auto-
matically iterating over a number of starting guesses
according to search parameters specified by the
user. The algorithm then tabulates a set of best-
fitting solutions and reports them to the user.

4. Interpreting the Q�ads function

ProtoFit operates by calculating from the raw
titration data an adsorbent proton buffering func-
tion Q�ads which represents the behavior that the
titration is intended to measure. Since Q�ads is
independent of the starting pH of the titration, it
provides for a meaningful direct comparison be-
tween datasets that would not be possible for raw
titration data unless starting pH values were exactly
the same. Furthermore, the shapes of the Q�ads

curves have physically meaningful interpretations.
In a discrete-site surface protonation model, each
dissociation reaction for each site will produce a
‘‘peak’’ in the Q�ads function. For example, titration
of acetic acid, a monoprotic organic acid, yields a
single peak in Q�ads (Fig. 1). The width and position
of the peak will depend on the surface protonation
model used: peaks generated by a nonelectrostatic
model (as is applicable to the acetic acid example)
will be relatively narrow and centered at the pK for
the reaction; peaks generated by an electrostatic
model will be broader and shifted either down-pH
(if the reaction involves a positively-charged surface
species) or up-pH (if the reaction involves a
negatively-charged surface species). If electrostatics
play an important role in surface speciation, the
peaks will shift position as ionic strength changes.

The use of the Q�ads function amplifies the ‘‘signal’’
from the titration data, and also may be useful for
bringing the limitations of the titration data to light.
For instance, compared to raw titration data or
‘‘CA � CB’’ vs. pH plots, visualizing the Q�ads

function may make it easier to determine whether
the titration adequately captures the surface proto-
nation behavior of concern. Also, comparing a
simulated titration to Q�ads may make it easier to see
the limitations of a model that may otherwise
appear reasonable compared to titration data
plotted in a conventional sense. For example, the
one-site double layer model (DLM) for corundum
ðAl2O3Þ parameterized using FITEQL by Hayes et
al. (1991) appears reasonable when compared to the
raw titration data (Fig. 2), but its limitations
become strongly apparent when compared to Q�ads.
A one-site DLM is clearly not suitable for this
surface; a more complex model would be required
to explain the surface’s protonation behavior. The
reason that visualization of raw titration data
obscures the poor fit is that much of the base added
during the titration was used to increase the pH of
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Fig. 2. Comparison of a prediction by a published one-site DLM

for corundum (Al2O3) to a titration dataset used to develop

model: (a) model simulation (solid line) appears to reasonably fit

raw titration data (open circles); (b) comparison between Q�ads

(open circles) and model prediction (solid line). Error bars

indicate standard error of Q�ads. Data and model from Hayes et al.

(1991); base volumes back calculated assuming a normality of 1N

and an initial solution volume of 1M.

Table 1

Model parameters used to simulate titration using PHREEQC

Parameter Value

Number of sites 3

Site type Acidic

pK values 4.0, 6.0, 8.0

Site concentration 1mol=kg
Surface complexation model NEM

Background electrolyte 0:01MNaCl

Titrant 1:0NNaOH

Solution volume 1L

Adsorbent mass 1 g

B.F. Turner, J.B. Fein / Computers & Geosciences 32 (2006) 1344–13561350
the solution, such that the base consumed in
changing the surface protonation was oversha-
dowed.

5. Effects of experimental noise

Experimental noise has important effects on the
analysis of titration data, affecting both the quality
of data interpretation and model optimization.
There are two potential sources of experimental
noise: (1) error in the pH measurement; and (2)
error in titrant volume. When calculating Q�ads, an
additional source of error is the uncertainty inherent
in estimating the activity coefficients for Hþ and
OH�, which contributes to error in estimating the
buffering capacity of water. For these reasons, error
in Q�ads will tend to be greatest at low and high pH
where the buffering capacity of water is high
compared to the buffering capacity of the adsor-
bent, and lowest at near-neutral pH where the
buffering capacity of water is least.

While the Q�ads function amplifies the ‘‘signal’’
sought from the titration, it also amplifies the noise.
Thus, noise will be much more readily apparent in
the Q�ads function than in the raw titration data, for
instance. This amplification of errors can be useful
to the experimentalist in a number of ways; for
example, experimental problems producing unac-
ceptable error may be more readily identifiable than
otherwise. Also, error estimates can be utilized to
weight the sum of squares calculation such that the
optimization is not heavily skewed by poorly-
constrained data points.

It is intuitive that error in Q�ads will affect the
optimization of model parameters, but it is not clear
without further analysis how and to what extent. To
address this issue, we have conducted a set of
simulations designed to investigate the effect of
error in pH on visualization of Q�ads and the
optimization of model parameters. The study is
based on two simulated titrations calculated using
PHREEQC (Parkhurst and Appelo, 1999), one with
104 data points, and one with 26 data points. Error
in the pH measurements were simulated by adding
a random normal deviate to each pH value
according to

pHsim;i ¼ pHi þ serrZi (24)

where serr is the standard error in the simulated pH
measurement and Zi is the random normal deviate
(see Table 1 for a description of the simulations).
The values of serr used were 0.003 and 0.03 pH
units. In order to investigate the effect of errors on
Q�ads and the accuracy of the model optimization,
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Fig. 3. Effect on appearance of Q�ads of number and spacing of

data points in a simulated titration with artificially introduced

error: (a) titration data with 104 data points; (b) 104-point data

set ‘‘weeded’’ to remove closely-spaced points (so that no points

are closer than 0:05pH units); (c) titration data with 26 data

points. Value of serr in each case is 0.03. Solid lines indicate F�ads.

Error bars indicate standard error of Q�ads.
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each simulated curve was modified by Eq. (24) using
10 different sets of random normal deviates.

The error weighting scheme has an effect on the
parts of the titration curve that receive the most
weight during the optimization process. When no
error weighting is used, the portions of the curve
with the greatest density of data points are given the
most weight in the optimization (in this case, at high
and low pH). However, since these portions tend to
have the most error associated with them (due in
part to uncertainties in estimating the proton
buffering of water), they are weighted less in the
optimization if error weighting is utilized, yielding a
more balanced distribution of weights.

The number of data points in the titrations has a
significant effect on the appearance of the Q�ads

function. Specifically, more closely-spaced data
points lead to greater uncertainty in individual
Q�ads values (Fig. 3). At a serr value of 0.03, the Q�ads

function with 104 data points is very noisy, while
the function with 24 data points is relatively
smooth. The reason for this is that the more
closely-spaced the points, the larger the uncertainty
in the position of the points is relative to the
distance between points; hence the greater uncer-
tainty in the slope estimate. An implication for this
is that the user may choose to eliminate data points
in the data set that are too close together in order to
obtain a less noisy Q�ads signal. In order to test the
effect of this on optimization, another set of
simulated data was generated by ‘‘weeding’’ the
104-point datasets so that no data points are
separated from adjacent points by less than 0.05
pH units. Since closely-spaced points lead to
uncertainty in the slope estimate, the weeding of
the dataset yields less apparent noise in Q�ads.

The effects of number of titration data points,
error amount, error weighting, and data point
weeding on accuracy of the model optimization were
tested, with results reported in Table 2. The most
striking trend is that the larger value of serr

consistently yielded greater uncertainty in the opti-
mization results. At the lower value of serr, it is not
clear whether error weighting or weeding improve
the accuracy of the optimization results. At the
higher value of serr, weeding of the datasets yielded
more accurate results, while it is not clear if error
weighting improved accuracy in the 104-point
datasets. However, error weighting did improve the
accuracy of results in the 26-point datasets at a serr

value of 0.03 pH units. Overall, the most accurate
results were obtained from the weeded 104-point
datasets with a serr value of 0.003 pH units and error
weighting enabled, and the least accurate results were
obtained from the 26-point datasets with a serr value
of 0.03 pH units and without error weighting.

This investigation of the effect of simulated errors
on data analysis and model optimization processes
yields insights that are not otherwise obvious. For
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Table 2

Results of optimization exercise involving simulated dataset. Values reported are average of optimized values with standard deviations

below

logK1 logK2 logK3 logC1 logC2 logC3

Simulated model �4.000 �6.000 �8.000 0.000 0.000 0.000

104 data points, serr ¼ 0:003
Unweighted, unweeded �4.039 �6.011 �8.004 �0.004 �0.003 0.000

0.030 0.010 0.004 0.002 0.003 0.001

Unweighted, weeded �4.034 �6.009 �8.003 �0.006 �0.002 0.000

0.019 0.006 0.003 0.003 0.002 0.001

Weighted, unweeded �4.017 �6.005 �8.004 �0.001 0.001 0.000

0.012 0.007 0.006 0.003 0.003 0.003

Weighted, weeded �4.025 �6.006 �8.005 �0.004 0.001 0.000

0.009 0.007 0.006 0.002 0.002 0.002

104 data points, serr ¼ 0:03
Unweighted, unweeded �3.805 �6.007 �8.000 0.234 0.004 0.014

1.235 0.182 0.059 0.783 0.062 0.014

Unweighted, weeded �4.271 �6.078 �8.018 �0.033 �0.013 0.001

0.132 0.030 0.022 0.046 0.019 0.004

Weighted, unweeded �4.300 �6.204 �8.123 �0.030 �0.010 �0.088

0.516 0.568 0.252 0.052 0.037 0.243

Weighted, weeded �4.080 �6.016 �8.032 0.010 �0.004 �0.002

0.082 0.061 0.042 0.033 0.028 0.011

26 data points, serr ¼ 0:003
Unweighted �4.034 �6.005 �7.952 �0.006 �0.013 �0.022

0.033 0.018 0.009 0.002 0.003 0.002

Weighted �4.001 �5.986 �7.959 �0.012 �0.006 �0.012

0.024 0.015 0.021 0.003 0.003 0.005

26 data points, serr ¼ 0:03
Unweighted �3.617 �5.824 �7.858 0.174 0.000 �0.006

1.004 0.475 0.252 0.369 0.040 0.052

Weighted �4.109 �6.047 �7.955 �0.001 �0.018 �0.026

0.111 0.101 0.049 0.030 0.016 0.021

Statistics are based on 10 random instances of each dataset. Value of weighting parameter used is 1.0.
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the purpose of model optimization, these results
indicate that a larger number of data points will
tend to yield more accurate results, and accuracy
may be improved in some cases by using error
weighting in the optimization and/or weeding out
closely-spaced data points. For data visualization
purposes, weeding out closely-spaced data points
yields a Q�ads function with less noise.

6. Using ProtoFit

Prior to using ProtoFit, titration data must be
recorded in an input file in the format specified in
the User’s Manual (Turner, 2005). Most users will
create the file using a text editor. Required
parameters include the pH and volume of titrant
for each titration data point, normality of acid or
base, adsorbent mass, and the initial solution
volume and ionic strength. Adsorbent specific
surface area is also required if electrostatic surface
complexation models are to be used. Titrant volume
is specified relative to the beginning of the dataset,
rather than relative to the pH of immersion.

ProtoFit runs in two modes: (1) optimization
mode, and (2) simulation mode. In optimization
mode, the parameters for a surface protonation
model are optimized to fit the function Q�ads (see
Section 3.3). ProtoFit will typically iterate over
several sets of starting guesses for the parameters,
converging on a number of parameter sets that may
or may not be significantly different (depending
largely on the complexity of the model). The user will
typically choose the best-fitting parameter set for the
model. In simulation mode, a simulated titration is
calculated given a parameterized surface protonation
model. The simulated titration is usually used for
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Fig. 4. Screenshot of simulation window in ProtoFit-GUI.

Interface provides for rapid visualization of data, including

comparisons of data to model simulations of Q�ads and raw

titration. Error bars indicate standard error of Q�ads.
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Fig. 5. A one-site DLM optimized for rutile (TiO2) at three

different ionic strengths: (a) raw titration data compared with

model simulations; (b) Q�ads function compared with model

predictions. Error bars indicate standard error of Q�ads. Model

parameters: logK1 ¼ �6:30, logK2 ¼ �4:46, logC ¼

�1:63 logðmol kg�1Þ (i.e. 0.70 sites nm�2). Data from Hayes

et al. (1991); mL values back calculated assuming solution

volume of 1:0L and acid normality of 1:0N. Error bars indicate

standard error of Q�ads.
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comparison with an observed titration in order to
judge the reasonableness of the model.

ProtoFit will typically be run through the graphi-
cal user interface ProtoFit-GUI (Fig. 4). In ProtoFit-
GUI, the user is able to (1) define a surface
protonation model; (2) specify how the optimization
should be run, including the dataset(s) to which the
model is to be optimized; (3) run ProtoFit in
optimization mode and peruse optimized parameter
sets; and (4) run ProtoFit in simulation mode, and
graphically compare the simulated titration to the
observed raw titration data and Q�ads function.
Individual optimized parameter sets can be selected
and automatically input into the titration simulator.
The simulation component of ProtoFit-GUI auto-
matically produces plots of observed and model
calculated adsorbent buffer value (Q�ads), system
buffer value (water plus adsorbent), and raw titration
data for comparison with the model simulation.

7. Examples

7.1. Example 1: Modeling ionic strength effects by

optimizing to multiple datasets simultaneously

An important advantage of electrostatic surface
complexation models such as the double layer
model (DLM) is the ability to predict the effect of
ionic strength on surface speciation. Ideally, a single
model can predict surface protonation behavior of a
given surface over a range of ionic strength
conditions. Hence, it is advantageous to parameter-
ize a model by optimizing to a number of datasets
simultaneously (with datasets spanning a range of
ionic strength values), rather than to individual
datasets.

ProtoFit allows for a model parameter set to be
optimized to several titration datasets simulta-
neously to obtain a best fit between the model and
the entire set of titrations. ProtoFit accomplishes
this by calculating SS� for each titration dataset by
Eq. (23), and optimizing the parameter set by
minimizing the sum of SS� values.

In the example given in Fig. 5, titration datasets of
rutile at ionic strength values of 0.001, 0.01, and 0:1M
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Fig. 6. Fitting of four-site NEM and three-site CCM to bacterial

titration data: (a) raw titration data compared with model

simulations; (b) Q�ads function compared with model predictions.

Error bars indicate standard error of Q�ads. Model parameters for

ProtoFit NEM: logK values: �3:44;�5:07;�7:54;�9:48;
logC values ðlogðmol kg�1ÞÞ: �0:87;�0:73;�1:17;�0:98.
Model parameters for FITEQL NEM: logK values:

�3:13;�4:75;�6:40;�8:92; logC values ðlogðmol kg�1ÞÞ:

�0:93;�0:74;�1:17;�0:97. Model parameters for ProtoFit

CCM: logK values: �3:63;�6:23;�7:45; logC values

ðlogðmol kg�1ÞÞ: �0:46;�1:17;�0:98; capacitance ¼ 2:4. Titration
data is of B. subtilis in 0:1M NaClO4 from Fein et al. (2005). Error

bars indicate standard error of Q�ads. Error weighting option was

not used in parameter optimization by ProtoFit in this example.
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were used to obtain an optimized 1-site DLM
assuming surface reactions as written in Eqs. (1)
and (2). A rough idea of the reasonableness of the
model can be obtained by examining how well the
model predicts the raw titration data. From Fig. 5a it
appears that the model predicts the raw titration
behavior very well. More detailed information regard-
ing the reasonableness of the model is obtained by
examining the fit of the model to the Q�ads function. It
is apparent from Fig. 5b that the model reasonably
predicts the ionic strength dependence of Q�ads.
However, a closer examination reveals that the
titration data are perhaps not as well constrained as
it might appear at first glance. According to the
model, the pH range covered in the titrations
corresponds to a ‘‘trough’’ in the Q�ads function
between two peaks corresponding to the pK’s for
Eqs. (1) and (2). In this light, it is apparent that neither
peak is fully captured by the titrations, with the lower
pH peak captured to a lesser extent than the higher
pH peak. While the model reasonably predicts the
ionic strength dependence of the surface’s buffering
capacity in the pH range covered by the experiments,
it is unclear whether the model will make reasonable
predictions outside of this range or whether the
model is a physically reasonable representation of
the surface.

7.2. Example 2: Modeling protonation behavior of a

biological surface

The determination of the surface protonation
characteristics of biological surfaces is especially
problematic since the initial degree of surface
protonation is usually not known. Since ProtoFit
does not require this as a constraint, it has a distinct
advantage over the proton balance approach (such
as that used by FITEQL), which must treat the
initial hydrogen ion component concentration (T0

H )
as an optimizable parameter.

In this example, a set of bacterial titration data
for B. subtilis (Fein et al., 2005) is used to obtain a
surface protonation model. Over the pH range
typical for titrations of biological surfaces, it is
reasonable to assume that each surface site is subject
to an acidic protonation reaction as expressed by
Eq. (1). Since biological surfaces are more complex
than mineral surfaces, and unlike mineral surfaces
the charge on biological surfaces is not concentrated
in a single plane, it is reasonable to avoid the
electrostatic surface complexation models used for
mineral surfaces and use a NEM. A four-site NEM
fitted to the data by ProtoFit provides a reasonable
fit to both Q�ads and the raw titration data (Fig. 6).

Alternatively, this model may be optimized by the
proton balance approach (Section 2.2), which
requires input of a data series comprised of paired
CA � CB and pH values. In this example, the total
exchange of protons with the bacterial surface prior
to titration (e.g. through bacterial growth, rinsing,
and acid washing procedures) is unquantified.
Hence the quantity CA � CB, rather than reflecting
the addition of acid or base relative to a zero proton
condition (i.e. where TH ¼ 0), reflects the addition
of acid or base relative to a reference point where
TH is unknown. The unknown value of TH at the
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reference point is treated by the algorithm as an
optimizable parameter (T0

H ). To illustrate the use of
this approach, we optimize the NEM using
FITEQL and defining the reference point where
CA � CB ¼ 0 to be the start of the base titration
dataset (pH 2.521). The optimized model provides a
reasonable fit to the data similar to the model
optimized by ProtoFit (Fig. 6). Since the speciation
of the bacterial surface at the reference point can be
predicted using the model in a speciation calculator
such as PHREEQC (Parkhurst and Appelo, 1999), the
model-predicted value of Tcalc

H (1:27� 10�3 eqL�1) at
the point can be calculated by evaluating Eq. (10).
However, comparing this with the optimized value of
T0

H (8:12� 10�4 eqL�1) reveals that the two values
are not the same. Since the approach minimizes the
sum of squares difference between Tcalc

H and T
exp
H over

the dataset as a whole (not just at the reference point),
Tcalc

H is not identical to T
exp
H when CA � CB ¼ 0.

Therefore, the optimized value of T0
H does not

necessarily match what one would predict using the
model.

Although the NEM describes the data reason-
ably, analysis of Q�ads (Fig. 6) reveals ‘‘peaks’’ that
are broader than what would be expected for a
surface with a small number of discrete sites
governed by the NEM. One approach, frequently
used in the modeling the protonation behavior of
humic acids, is to assume a continuous distribution
of pK values (e.g. Perdue et al., 1984). Another
possible approach is to use a simple electrostatic
model to add breadth to the peaks through
simulated electric field effects. For comparison with
the NEM, a three-site constant capacitance model
(CCM) was used to fit the observed surface
protonation behavior. It is apparent from Fig. 6
that the CCM provides a superior fit to the surface’s
protonation behavior. However, although this use
of the CCM provides a good empirical fit to the
data, the electrostatic effects implied in the model
are likely not mechanistically or quantitatively
realistic for a bacterial surface.

7.3. Example 3: Using ProtoFit with molecular acids

Although ProtoFit is primarily designed for
determining speciation constants for surfaces, it
can just as easily be used to determine speciation
constants for some molecular acids such as humic
acids. This can be accomplished using the non-
electrostatic adsorption model just as one would
for a surface. Since specific surface area is not
meaningful in this case, the SSA value supplied to
the program would be any arbitrary value (provided
SSA40). An example of using ProtoFit for
determination of speciation constants for an organic
acid was provided in Fig. 1. A similar approach is
possible for modeling the more complicated proto-
nation behavior of humic and fulvic acids. How-
ever, the NEM is unable to predict the subtle ionic
strength effects affecting protonation of humic and
fulvic acids.
8. Summary and conclusions

The protonation behavior of natural surfaces
including mineral and biological substrates is
important to a wide range of geochemical processes.
ProtoFit is a software package for data visualiza-
tion, model simulation, and optimization of surface
protonation models using acid–base titration data
that characterize the buffering capacity of these
surfaces. The optimization approach used by Pro-
toFit is to calculate an adsorbent proton buffering
function ðQ�adsÞ from raw titration data, and to
minimize the weighted sum of squares between this
function and the model prediction. The approach
offers important features including:
�
 ProtoFit does not require that the initial surface
charge be known, nor does it require that initial
surface charge be effectively treated as an
optimizable parameter.

�
 Automatically computed error estimates can be

used to weight the sum of squares calculation,
such that well-constrained data are given greater
weight than poorly-constrained data.

�
 The adsorbent proton buffering function Q�ads

represents the behavior that the titration is
intended to measure. Visual examination of
Q�ads provides greater insight into data and model
limitations than visualization of raw titration
data.

The approach used in ProtoFit is particularly
suitable for organic/biological adsorbents for which
the initial surface charge cannot be measured.

Our stochastic analysis of the effects of noise on
model optimization indicates that a larger number
of data points yield more accurate model optimiza-
tion results. Accuracy can also be improved by error
weighting the sum of squares function and weeding
out closely-spaced data points.
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The software package includes ProtoFit-GUI, a
graphical user interface providing user-friendly
control of model optimization, simulation, and data
visualization. The software is designed for cross-
platform portability, and should run on Microsoft
Windows and most popular Unix-like operating
systems. ProtoFit is written in Fortran-95 and
ProtoFit-GUI is written in Tcl/Tk. ProtoFit and
ProtoFit-GUI are Free Software licensed under the
Gnu General Public License. The ProtoFit software
package and documentation can be downloaded at
http://protofit.sourceforge.net
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